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Abstract. Despite recent advances, text-to-image generation on com-
plex datasets like MSCOCO, where each image contains varied objects,
is still a challenging task. In this paper, we propose a method named
visual-memory Creative Adversarial Network (vimCAN) to generate im-
ages depending on their corresponding narrative sentences. vimnCAN ap-
propriately leverages an external visual knowledge memory in both multi-
modal fusion and image synthesis. By conditioning synthesis on both in-
ternally textual description and externally triggered “visual proposals ”,
our method boosts the inception score of the baseline method by 17.6%
on the challenging COCO dataset.
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1 Introduction

Realistic image generation from natural language descriptions is an active re-
search task. The technique is applicable to many practical applications such as
image editing and sketch or game designing. Models based on Generative Adver-
sarial Networks (GAN) [6] have achieved promising results on datasets merely
consisting of single category objects in images like CUB [35] and Oxford Flower
[20]. However existing methods are far from promising on complex dataset like
MSCOCO [16], in which generally one image contains varied objects and objects
are rarely centered in the image [24, 38]. In order to generate complex scenes, ex-
isting approaches attempt to utilize word level attention to fine-grain image [37],
establish hierarchical text-to-image mapping [8] and enhance the text descrip-
tion in a manner of dialog [5]. However, little work has been carried out using
auxiliary visual knowledge. According to the human painting process, real-world
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scenes or some references may help a painter learn quickly during training and
improve the generation quality during inference. That is to say, one sophisti-
cate painter in general triggered many of the relevant visual cues during his/her
painting.

Based on these intuitions, we suggest using sub-images as the visual cues to
enhance text-to-image generation. More specifically, we use proposals extracted
by Region Proposal Network [26] as visual cues which are stored in the external
visual-knowledge memory. A proposal feature vector can be viewed as a visual
summary of a meaningful sub-image, especially the one with the highest proba-
bility containing a real-world object.

The extracted proposals (i.e., visual cues) bears many of visual details such as
texture, shape, color, size, etc., and they can potentially be inspired together to
synthesize images after they are triggered by corresponding textual descriptions.

In this paper, given one textual sentence and the external visual-knowledge
memory, we first utilize the multi-modal Encoder to encode the textual sentence
into a multi-modal hidden vector. The multi-modal encoder is similar to the
Memory Network model proposed by [31]. However, this paper uses semantic
embeddings instead of bag-of-words representation.

The key contributions of our work are listed as following: we propose a model
named visual-memory Creative Adversarial Network (vinCAN) for generating
complex real-world images in a synthesis manner via the appropriate integration
of an external visual-knowledge memory (i.e., visual cues). We employ a multi-
modal encoder to encode visual cues and textual description into a multi-modal
hidden vector to trigger the relevant visual counterparts of sentence descriptions.
Knowledge retrieval process is stacked along with the stacked image generation
process. We conduct experiment and evaluations on MSCOCO and our proposed
approach boosts the inception score by 17.6% than the baseline.

2 Related Work

2.1 Memory Network

First proposed by [32, 31], Memory Network has been utilized to augment neural
networks for different tasks, such as algorithm inference [7], conversational sys-
tems [29, 34, 5] and question answering [36, 31]. Memory helps extend the capa-
bility to capture long-term dependencies and provides a way to model relevant
information inside their surroundings. As for unconditioned image generation
area, [14] presents a deep generative model (DGMs) with memory and attention
to capture the local detail information and [12] successfully applied a life-long
memory network [11] to adversarial models.

Compared with these memory augmented networks, we propose to employ
an external visual-knowledge and memory network to model and leverage the
correlations between visual images and textual sentences. The uniqueness of our
model will be specified in the next section.



2.2 Generative Adversarial Networks

Recently, Generative Adversarial Networks have shown the ability to generate
appealing images with conditions. Generated images are required not only real-
istic but also well aligned with the condition constraints. The condition variable
can be simple discrete class labels [19,22,3,21] and language sequence [24,4,
38] which is complex in structure and plentiful in expression. Constrained on
visual domain, GAN model has been applied to domain transfer [9,17], image
editing [2, 39], super-resolution [13,10] and style transfer [10]. [25] managed to
draw pictures conditioned on object location. [4] proposed a method to edit a
given image with specific textual description. Compared with these Conditional
GAN models, our proposed vinCAN attempts to synthesize images conditioned
on the textual description and multiple relevant sub-images, which can be seen
as an appropriate extension to CGAN framework.

3 Knowledge Grounded Synthesis

We formulate the sentence-to-image problem as following: given an image de-
scription ¢, which may remark objects, properties of objects and relations be-
tween objects, we aim to learn a series of stacked multi-modal encoders M E, ...,
ME,, and stacked generators Gy, ...G4y,. The final output is one corresponding
image s = Ggn(MEy,(...(Go(MEy(t, R))...), Pgn)), where P; is one group of m
proposals sampled from Kownledge Proposal Memory and gn is the number of
stacked processes. We set gn = 2 in our experiment.

Compared with textual-knowledge based system [5,28], one primary chal-
lenge in leveraging visual knowledge is that images relevant to the target syn-
thesized image still contain much irrelevant information. In our opinion, objects
are typically the most important part of an image and they can be easily ex-
tracted using Region Proposal Network.

Another problem is that relevant sub-images cannot be directly applied to
the target image. For example, virtual viewpoint synthesis [30] requires large
viewpoint inputs like video sequence which can provide important structure and
texture information. As a result, we use semantic vectors to represent these
sub-images and employ attention mechanism to leverage them.

Our model will be demonstrated in three parts: 1. Proposal Extraction for
knowledge preparation. 2. Multi-modal Encoder to encode text and relevant pro-
posals (i.e. visual cues) into a multi-modal hidden vector. 3. Stacked Adversarial
Generation to generate the realistic image in a stacked manner conditioned on
the multi-modal hidden vector.

3.1 Proposal Extraction

Region Proposal Network proposed by [26] ranks and refines region boxes called
anchors to generate high-quality region proposals which most likely contain an



object. After RPN, a Region of Interest Pooling layer is used to normalize dif-
ferent sized CNN feature map into the same size. The output of ROI pooling is
used as visual cues in our visual-memory knowledge.

We extract about 320000 proposals from MSCOCO training dataset images
to build our Proposal Knowledge Memory. Each proposal is a semantic vector
of dimension 1024. When there are more than 5 proposals in one image, we just
keep top 5 proposals with the highest predicted objectness score. Extraction can
be finished in an offline fashion.
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A glass table with a chair next to a window.

Fig. 1. We extract proposals which may provide texture, shape and color cues to build
our visual-knowledge memory. After given a sentence “a glass table with a chair next to
a window”, the multi-modal encoder triggers some of useful visual cues (i.e. proposals
in visual-knowledge memory) to generate a multi-modal hidden vector w.r.t. the given
sentence.

3.2 Multi-modal Encoder

Based on memory networks, our Multi-modal Encoder M E uses two encoders
and attention mechanism to model proposals (i.e., visual cues) and textual de-
scriptions.

We first encode text description ¢ into a continuous representation ¢(t) us-
ing a pre-trained text encoder ¢ [24]. We further augment the text embedding
using a method proposed by [38]. This augmentation helps generate a large num-
ber of additional text embeddings for adversarial training [4]. More formally, a
fully connected layer is applied over the input text embedding to generate p
and 0. The augmented text embedding is computed as ¢(t) = u+ o () & where
¢ is sampled from A (0,7) and () is the element-wise multiplication operator.
Augmented text vector is of dimension d. We randomly sample m proposals
P = {p1,p2, 03, -..s Pm } from Proposal Knowledge Memory. Based on [31], these
proposals are encoded into key representations and value representations respec-
tively:

ki = ko(p:)

U = VO(pi)

(1)



Where p; is a proposal feature vector of dimension 1024, k; and v; are of dimen-
sion d. Key representation is used to attend and weight retrieved knowledge.
Value representation contains useful guidance necessary for generation. Both
key and value encoders are neural networks which are simple fully connected
layers with ReLU activation function in our model. The multi-modal hidden
vector is produced as follows:

a; = Softmaz(p(t) T k;)
o (2)
c=(0,(t))
¢ = ReLU(We+b)

¢ = ME(t, P) is the final multi-modal hidden vector of dimension d.
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Fig. 2. Pipeline of the proposed vmCAN. At the first stage of generation, augmented
text embedding ¢(t)’ and sampled m proposals will be encoded to a multi-modal
represenatation ¢y. This feature vector will guide the first sketch-like image generation.
For stage-II, mutimodal tensor & from the first stage will make induction on newly
sampled m propoals. The output é; and the downsampled first-stage generated image
will be concatenated and used for real-world image generation.

3.3 Stacked Adversarial Generation

Building upon StackGAN-v1 [38], the whole pipeline model is defined in figure 2.
Stage-I Generation For stage-I Generation, more sketch-like information like
shapes from proposals (i.e. visual cues) will be used. The multimodel condition
vector ¢ helps generator produce a low-resolution sketch-like image. A noise
vector is sampled from a normal distribution p.. Concatenated by this noise
vector, the multi-modal hidden vector goes through several upsampling blocks
to generate a Wy x Hy color image. Then Discriminator Dy downsamples this
image to My x My x Ny feature map. Meanwhile, the augmented text embedding



(t)" is spatially replicated to My x My x d and then concatenated with above
image feature map. The concatenated tensor is further downsampled to a fake-
real score whose range is between 0 and 1. The loss functions of Gy and Dy are
defined as follows:

too= B llogDoll.olt))]+
zwpz’gpdata[log(l — Do(Go(2,¢0), ¢(t)"))] )
‘CGO = E [109(1 - DO(GO(Za éO)a w(t)l))}

z~vpz,t~Pdata

+ AD LN (o9 (t)"), Zo(e®))IN(0, 1))

where [ is the real image, t is the pre-trained text embedding, z is a noise
vector sampled from a given distribution such as Gaussian distribution in our
experiment and ég = M FEy(t, Pp) is the multi-modal hidden vector. In our model,
the discriminator is not conditioned on proposals. That is to say, the generated
image doesn’t need to be well aligned with proposals. Only some useful visual
cues inside these proposals are used. The Stage-I model is trained by alternating
between maximizing £p, and minimizing Lq,.

Stage-II Generation For stage-II, more comprehensive information from
proposals (i.e. visual cues) will be used. Such information helps to rectify the
imperfection in Stage-I results and add appealing details to them. Stage-I multi-
modal hidden vector ¢y makes induction on newly sampled m proposals to pro-
duce ¢ = ME1(Go, P1). Encoders k1 and vy inside M E; in stage-II are trained
from scratch in this paper but they can reuse weights from k¢ and vy inside
MEj to ease training since they reduce the number of parameters. The image
generated by Gy is downsampled to M, x My x Ng. ¢; is spatially replicated
to My x My x d and concatenated to the image feature map. Generator G
upsamples the concatenated feature map to a Wj; x H; image. Discriminator
D; downsampling process is the same as Stage-1 except that the input image
is larger and downsampling networks are more complex. Similar to stage-II, the
loss functions of Gy and D1 are:

Lo = B llogDi(Lplt) I+
o B [log(1 = Dy(Gi(s0.0).0(0))] "
Lo=_ B [log(l=Di(Gis0.é1).¢(t)))

S0~PGo t~Pdata

+ ADK LN (po(e(t)"), Zo((t))IN(0, 1))

where s is the generated image by Stage-1 Gy. To make it more directly compa-
rable to baseline StackGAN model, we set the model parameters as N, = 100,
Wy =64,Hy =64,My =4,N; =512,Ny =128,M, =16,N, =512,d =128, =256,
H, = 256, and A = 1.



a yellow pickup
truck stopped at
an intersection

a person cutting
a pizza with
a pair of scissors

a couple of plates
that have some
food on them

a small laptop
is sitting on a
desk

this hazy picture
depicts traffic
on a busy street

a living room filled
with living room
furniture and decor

Fig. 3. Some samples of descriptions, top 2 relevant proposals and generated images.
Generated images are highlighted using red boxes and relevant proposals are underlined
in blue.

4 Experiments

4.1 Experimental Setup

Datasets Our model is evaluated on COCO captioning 2015 dataset. By de-
fault, it contains 80k images for training and 40k images for validation with 5
captions per image. There are over 80 semantic object categories in total and
each image contains varied objects which are rarely centered in the image.

Evaluation In order to measure images generation recognizability and genera-
tion diversity, we use inception score. Moreover, we generate captions to quanti-
tatively measure how well the generated images are conditioned on the textual
descriptions.

Inception Score - Inception score is first proposed by [27] and has been ac-
knowledged to be well correlated with human evaluation on the quality and
diversity of generated images.

Caption Quality[8] - Since the inception score cannot reflect whether the
generated images are well conditioned on the given text descriptions, we generate
captions using a pre-trained caption model [18] trained on MS-COCO. Then we
measure how similar these generated captions are to textual input using four
standard language similarity metrics: BLEU [23], METEOR [1], ROGUE_L [15]
and CIDEr [33].

In addition to quantitative evaluations above, we also conduct qualitative
evaluations in terms of visualization.

4.2 quantitative Results

Ablative Analysis In order to better understand the impact of visual knowl-
edge, we conduct ablative analysis by using Ground Truth knowledge for each
textual description. Given a text-image training pair, proposals extracted from
the paired image are considered as Ground Truth knowledge in terms of the



Table 1. Inception Score by different models on MSCOCO test sets. Higher is better.

Inception Score

StackGAN [38] 8.35 £ 0.03
vmmCAN-R 9.94 +£0.12
vmmCAN-GT 10.36 +0.17
chatPainter [28] 9.74 + 0.02
Hong et al. (2018) [8] 11.46 +0.09
AttnGAN [37] 25.89 + 0.47

corresponding textual description. Instead of training a multi-modal encoder to
encode proposals and text to a meaningful multi-modal vector, we simply aver-
age this group of proposal vectors, linearly transform the averaged vector to a
tensor of dimension d, concatenate this tensor with augmented text embedding
©(t)" and finally non-linearly encode them into a multi-modal hidden vector of
dimension d. This vector will be used for further generation. This is, in fact,
a weak upper-bound because we simply average these proposal feature vectors.
Even though, we get substantial improvement both on the Inception Score and
Caption Generation BLEU. This weak upper-bound model is noted as vinCAN-
GT and the previous model is named vimnCAN-R.

Table 1 shows the image recognisability analysis. In detail, we compare the
test set image generation Inception Score between our method, the baseline
method, and some other approaches based on conditional GANs. Our model
boosts the baseline method by 17.6%. This quantitatively shows that proposals
(i.e. visual cues) can help enhance the generation quality and potentially increase
the generation variety. We will point out that the proposed vimCAN does not
achieve a better performance compared to attnGAN][37]. However, attnGAN,
which also has a stacked generation process, can be enhanced by incorporating
the visual-knowledge memory and the multi-modal encoders.

Table 2. Evaluation metrics based on caption generation to measure whether the
generated images are well conditioned on the given text descriptions. Higher is better
in all columns.

Caption Generation
BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEROR ROUGE_L CIDEr

StackGAN([38] 0.400 0.188 0.078 0.037 0.092 0.267 0.039
vmmCAN-R 0.399 0.187 0.079 0.038 0.093 0.266 0.039
vmCAN-GT 0.467 0.261 0.137 0.075 0.124 0.307 0.145
Real Image 0.743 0.577 0.427 0.313 0.273 0.488 0.946

Table 2 shows the caption generation result. By conditioning both on text
description and additional visual knowledge, our method yields little loss on text-
image(generated) relevance with randomly sampled knowledge and an improve-
ment with Ground Truth knowledge. This result further shows the effectiveness



of the utilization of proposals (i.e. visual cues) and the necessity of building an
efficient and accurate text-proposal retrieval system.

4.3 Qualitative Results

Figure 3 shows some examples of generated image and Top 2 relevant proposals.
In detail, we compute the cosine similarity between the text embedding ¢(t)" and
key encodings of K sampled proposals and visualize the top 2 relevant proposals
represented using bounding box. This result shows that our multi-modal encoder
is able to activate relevant visual knowledge although some of them are irrelevant
from the human perspective.

Figure 4 shows some creative generation examples generated by our proposed
method. These results illustrate that our method is able to generate novel images
which do not exist in the source dataset.

Fig. 4. Some novel images generated by our model.

5 Conclusions

In this paper, we propose a visual-memory augmented approach named vm-
CAN for sentence-to-image synthesis. Our model obtains substantial improve-
ment over the baseline method on the challenging MSCOCO dataset.
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