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ABSTRACT
Semantic image manipulation (SIM) aims to generate re-

alistic images from an input source image and a target text
description, such that the generated images not only match
the content of the description, but also maintain text-irrelevant
features of the source image. It requires to learn a good map-
ping between visual features and linguistic features. Previous
works on SIM can only generate images of limited resolu-
tion that typically lack of fine and clear details. In this work,
we aim to generate high-resolution photo-realistic images for
SIM. Specifically, we propose SIMGAN, a generative adver-
sarial networks (GAN) based architecture that is capable of
generating images of size 256 × 256 for SIM. We demon-
strate the effectiveness of SIMGAN and its superiority over
existing methods via qualitative and quantitative evaluation
on Caltech-200 and Oxford-102 datasets.

Index Terms— adversarial learning, generative model,
image generation, semantic image manipulation

1. INTRODUCTION

Humans have the ability to manipulate representations of
imaginary pictures in their minds in a goal-oriented fash-
ion [1]. Such capability is of great significance in generating
creative thoughts for visual arts [2]. A natural question is
whether machines can have such ability. This can be formu-
lated into an image generation task called semantic image
manipulation (SIM) [3]. Specifically, given an input source
image and a target text description, the generated images for
SIM should 1) match what the target description specifies; 2)
maintain text-irrelevant features of the source image, and 3)
be realistic and plausible. A key challenge of SIM is to learn
a good mapping between visual and linguistic features.

Recently, a number of Generative Adversarial Networks
(GAN) [4] based generative models [5, 3, 6, 7] have been
proposed to tackle SIM. They have succeeded in generating
images of size up to 128 × 128 for SIM. However, the gener-
ated images typically lack of fine and clear details due to their
relatively low resolution. Generating images of higher reso-
lution with photo-realistic details, and with aforementioned

Fig. 1. Photo-realistic images for semantic image manipula-
tion (SIM) generated by our proposed SIMGAN.

requirements of SIM satisfied, remains a challenge.
In this work, we therefore aim to generate photo-realistic

images for SIM. Specifically, we propose SIMGAN, a novel
GAN based framework for SIM that is capable of synthesis-
ing high-resolution 256 × 256 images. The main idea is that
in training stage we reuse the same generator (which is orig-
inally used to generate images for SIM given a source image
and a target text description) to map those generated images
back to its corresponding source image with the ground-truth
matching text description. Inspired by previous works on neu-
ral machine translation [8] and image-to-image translation [9,
10, 11], such introduced cycle-consistent constraint can sig-
nificantly reduce the required search space of the generating
function. As a result, the generator can not only synthesise
higher-resolution images (which would be difficult without
such imposed constraint, as high-resolution generated images
make it easily distinguished from real images [12, 13]), but
also better maintain the text-irrelevant contents (e.g. back-
grounds) of source images and match target text descriptions,
as required by SIM. Some results of SIM generated by our
proposed SIMGAN are presented in Fig. 1.

The main contribution of this work is the design of SIM-
GAN, which is able to generate photo-realistic 256 × 256
images for SIM. To the best of our knowledge, this is the best
result reported yet for this task. We evaluate our model on
Caltech-200 [14] and Oxford-102 [15] datasets, and demon-



Fig. 2. Schema of our proposed SIMGAN architecture for semantic image manipulation (SIM).

strate the effectiveness of SIMGAN and its superiority over
other comparison methods, in terms of generating sharp and
realistic images that contain clear and fine details and match-
ing the semantics specified by target text descriptions.

1.1. Prior work

Reed et al. [5] first proposed a two-step method, in which
an auxiliary style encoder was used to invert the trained gen-
erator of text-to-image synthesis, so that the text-irrelevant
features of source images can then be extracted. Our previous
work [3] employed the cGAN framework [16] directly condi-
tioned on both image and text information, with an adaptive
loss developed for SIM. Nam et al. [7] proposed to use a text-
adaptive discriminator, which consisted of multiple word-
level local discriminators that can disentangle fine-grained
visual attributes from text descriptions. Similar to this work,
Liu et al. [6] recently proposed to impose cycle consistency
for SIM. However, compared with their approach, our pro-
posed SIMGAN has three main advantages. First, SIMGAN
is able to generate images of much higher resolution (256 ×
256 vs. 64 × 64), with much finer and clearer photo-realistic
details. Second, SIMGAN enables one-to-many generation,
i.e. multiple and diverse images can be generated given one
source image and one target description. Last, SIMGAN only
needs to train one set of generator and discriminator, which
leads to a much more compact model.

2. METHOD

The schema of SIMGAN architecture is illustrated in Fig. 2.
It consists of a generator G and a discriminator D. The gener-
ator G has three modules: an encoder, a residual block and a
decoder.

At inference stage, the trained generator G∗ will first take
as input a source image x (whose features will then be ex-

tracted by the encoder module) and features of a target text
description ϕ(t̄) (extracted by a pretrained text encoder ϕ).
Extracted features of the image and text will then be concate-
nated and fed to the residual block. The use of the residual
block will not only help retain underlying structure of x as
required by SIM, but also enable the model via a deeper en-
coding process to learn better mappings between visual and
textural features [3]. Finally, the output of the residual block
will be as the input of the decoder module, from which mul-
tiple and diverse images x̂ for SIM will then be generated.

At training stage, several designated loss terms are em-
ployed to enable SIMGAN to generate high-resolution photo-
realistic images for SIM. These will be explained in detail as
follows.

2.1. Adversarial loss

The generated images for SIM are required to not only be
realistic and match the given text descriptions, but also main-
tain the text-irrelevant features of the source images. It would
be difficult to explicitly define a corresponding learning ob-
jective for such complicated image generation problem. In-
stead, we employ adversarial learning to implicitly learn an
adaptive loss function for SIM. The discriminator D receives
three types of inputs: real images x with matching texts t
(as real score), real images with mismatching texts t̃ (as fake
score) and generated images x̂ with relevant texts t̄ [3] (as
fake score). Also, we employ the least square loss [17] rather
than the original negative log likelihood, in order to improve
the stability of GAN training and to generate images of bet-
ter quality and higher resolution. The adversarial loss La of
SIMGAN is defined as follows.

La(G,D) = E(x,t)∼pdata [(D(x, ϕ(t))− 1)2]

+ E(x,̃t)∼pdata [D(x, ϕ(t̃))2]

+ E(x,̄t)∼pdata [D(G(x, ϕ(t̄)), ϕ(t̄))2].

(1)



2.2. Cycle loss

Using the adversarial loss alone is not sufficient to generate
higher-resolution images for SIM, because generated images
of higher-resolution can be distinguished more easily from
real images by the discriminator D, which will in turn make
the training process unstable [12, 13] and thus impair the
quality of generation. To tackle this challenge, inspired by
recent works on machine translation [8] and image-to-image
generation [9, 10, 11], at training stage we reuse the generator
G to reconstruct the input source image x̃ from the generated
images x̂ (with the matching text t of x, see Fig. 2), and apply
a cycle loss Lc to enforce x̃ to be close to x. We define Lc as
following:

Lc(G) = E(x,t,̄t)∼pdata [‖G(G(x, ϕ(t̄)), ϕ(t))− x‖1]. (2)

This cycle loss significantly reduces the searching space of
the generatorG, which critically contributes to the generation
of photo-realistic images for SIM.

2.3. Conditioning augmentation loss

SIM essentially is a one-to-many generation task. To en-
able SIMGAN to generate diverse images for SIM given one
source image and one target text description, we apply the
method of conditioning augmentation [18]. Specifically, it al-
lows additional text features to be sampled from a Gaussian
distribution N (Cµ(ϕ(t)), CΣ(ϕ(t))), in which its mean and
diagonal covariance matrix are functions of target text fea-
tures ϕ(t) (denoted as Cµ and CΣ respectively) with learn-
able parameters trained along with the model. A conditioning
augmentation loss Lca is incorporated in SIMGAN:

Lca(Cµ, CΣ) = KL(N (Cµ(ϕ(t)), CΣ(ϕ(t))) ‖ N (0, I)),
(3)

which is the Kullback-Leibler (KL) divergence between the
standard Gaussian distribution and the target sampling Gaus-
sian distribution.

It is worth noting that we only apply Lca in the process
of generating x̂ (from x and t̄) to encourage diversity. We do
not impose Lca when generating the reconstructed image x̃,
in that the cycle lossLc enforces x̃ to match closely the source
image x. In such case, therefore, x̃ should not be of variety.

2.4. Full objective

The full objective function of our proposed SIMGAN is:

min
G,Cµ,CΣ

max
D
L(G,D) = λaLa(G,D)+

λcLc(G) + λcaLca(Cµ, CΣ),
(4)

where we employ λa, λc, and λca to control the strength of
each individual loss term.

3. EXPERIMENTS

3.1. Experimental details

We evaluated our proposed SIMGAN on Caltech-200 [14]
and Oxford-102 [15] datasets. We compared SIMGAN with
existing approaches for SIM, including SISGAN [3], CC-
GAN [6] and TAGAN [7].

In the generator G, the encoder had 3 convolutional lay-
ers; the residual block had 16 residual units [19], each of
which contained 2 convolutional layers; the decoder had 2
transposed convolutional layers. The discriminator D had 8
convolutional layers. ReLU and leaky-ReLU activation were
respectively employed in G and D. Batch normalisation [20]
was used in all networks. We adopted a pretrained text en-
coder ϕ from [21].

We set λa = 1, λc = 10 and λca = 1 in Equation 4. We
used the Adam optimiser [22], with an initial learning rate of
0.0002. The networks were trained for 600 epochs, and the
learning rate was halved every 50 epochs. Batch size was set
to 16. We implemented our methods using TensorFlow [23]
and TensorLayer [24].

3.2. Qualitative results

The qualitative results of SIMGAN and the comparison meth-
ods are presented in Fig. 3. Although SISGAN and CCGAN
are able to generate images that meet the requirements of SIM
to some extent, their relatively low resolution limits the qual-
ity of the results, which typically lacks of clear and fine de-
tails. TAGAN can generate much clearer images and better
preserve the text-irrelevant features than those of SISGAN
and CCGAN. By contrast, our proposed SIMGAN is capable
of not only generating images of highest resolution with most
photo-realistic details, but also well matching the target text
descriptions while maintaining the features of source images
not specified by texts.

3.3. Quantitative results

For SIM, the most reliable quantitative evaluation is human
evaluation, though subjective factors may be involved. We
hence performed a human study to compare the methods
quantitatively. Specifically, we recruited 13 subjects, each
of whom was presented 6 images with 6 different target de-
scriptions and the corresponding generated images by each
comparison method. The subjects were then asked to rank
these four methods (from 1 to 4, 1 for the best) based on three
criteria: whether the generated images 1) are of high quality
with fine details (sharpness), 2) match well the target text
descriptions (accuracy), and 3) preserve the text-irrelevant
features of the source images (consistency).

The averaged ranking scores are shown in Table 1. SIM-
GAN achieves the best ranking scores of sharpness and ac-
curacy among the comparison methods, which indicates its



Fig. 3. Qualitative comparison results of SISGAN [3], CCGAN [6], TAGAN [7] and our proposed SIMGAN.

Table 1. Comparison results of human evaluation.

Sharpness Accuracy Consistency

SISGAN [3] 3.32 ± 0.52 2.58 ± 1.00 3.49 ± 0.82

CCGAN [6] 3.45 ± 0.56 3.71 ± 0.58 3.01 ± 0.89

TAGAN [7] 1.68 ± 0.49 2.03 ± 0.66 1.64 ± 0.58

SIMGAN 1.28 ± 0.50 1.71 ± 0.80 1.86 ± 0.77

effectiveness for SIM. However, it has slightly lower score
of consistency than that of TAGAN. This could be explained
by a fact that the cycle loss used in our model may not well
preserve the colour of source images, as also reported in [9].

3.4. Interpolation and diversity results

If traversing in the learned latent space leads to semantic
changes to the generated images (i.e. a smooth latent space),
then we can reason that the model successfully learns relevant
and useful representations, rather than simply memorising
the training data [25]. We fed the linearly interpolated rep-
resentations of two different target text descriptions with a
same source image to SIMGAN. As presented in Fig. 4, the
generated images clearly demonstrate smooth variations be-
tween semantics of the two target descriptions. Moreover, all
the generated images not only remain plausible with photo-
realistic details, but also maintain the text-irrelevant features
of the source image. Such continuous transition indicates that
SIMGAN learns relevant and useful features for SIM.

Due to the applied conditioning augmentation loss Lac,

Fig. 4. Results of linearly interpolating between features of
two target text descriptions from SIMGAN.

SIMGAN is able to generate diverse images from one source
image and target description for SIM (i.e. one-to-many gen-
eration, see Fig. 1)

4. CONCLUSION

In this work, we have proposed SIMGAN, which is able to
generate photo-realistic images of size 256 × 256 for seman-
tic image manipulation. This is for the first time that such
high-resolution images can be generated for this challenging
image generation task. We have demonstrated the effective-
ness of our model and its superiority over other existing meth-
ods. In future, we aim to apply our model to other datasets
that contain more complicated objects and backgrounds.
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